

TP5 - Vérification de performances du pilote 5000

Candidat Document Réponses

Noms: Prénoms:

Essai à vide (sans corde, sans support)

Mesures de vitesse à vide

Vitesse de rentrée : $v_0 = 200 / 7 = 28,5 \text{ mm / s} = 0,0285 \text{ m / s}$ Vitesse de sortie : $v_0 = 200 / 7,5 = 26,6 \text{ mm / s} = 0,00266 \text{ m / s}$

Mesures pour détermination de puissance à vide

Tension d'alimentation : $U_0 = 12 V$

Intensité consommée en mouvement : I $_0 = 620$ mA = 0,62 A Puissance consommée électrique : Pe $_0 = U_0$. I $_0 = 12 \times 0,62 = 7,44$ W

Essai en charge (avec corde, avec support, avec / sans charge)

Validation des hypothèses (mesures avec support non chargé)

Valeurs mesurées Écarts % / valeur mesurée Vitesse de rentrée : $V'_0 = 0,0285 \text{ m/s}$ $100 \times (\Delta V_0 / V_0) = 0 \%$ Tension aux bornes d'alimentation : $U'_0 = 12 \text{ V}$ $100 \times (\Delta U_0 / U_0) = 0 \%$ Intensité aux bornes d'alimentation : $I'_0 = 630 \text{ mA}$ $100 \times (\Delta I_0 / I_0) = -1,61 \%$ Puissance électrique consommée : $Pe'_0 = 7,56 \text{ W}$ $100 \times (\Delta Pe_0 / Pe_0) = -1,6 \%$

Conclusion:

Les écarts sont faibles (moins de 5%). On peut donc considérer que le support et la corde ne parasiteront pas les mesures en charge, sauf si les écarts sont très faibles.

Mesures pour détermination de performances en charge (F = 50 N)

Vitesse de rentrée : v = 200 / 9.5 = 21.05 mm / s = 0.0215 m / s

Page 1 / 3

Tension d'alimentation : U = 12 VIntensité consommée en mouvement : I = 1,25 A

Puissance électrique consommée : Pe = U_0 . $I_0 = 12 \times 1,25 = 15 \text{ W}$ Puissance mécanique utile : Ps = F . $V = 50 \times 0,0215 = 1,05 \text{ W}$

Rendement expérimental : $\eta = 1,05 / 15 = 6,7 \%$

Comparaison entre valeurs mesurées et valeurs spécifiées

Rappel et détermination de performances spécifiées par le constructeur

Selon les courbes du dossier technique : Pe spécifié = 15 W

Ps spécifié = 1,25 W

η spécifié \cong 9 %

Selon le dossier technique constructeur : Pe $_0$ spécifié = U_0 spé . I_0 spé = $12 \times 0.18 = 3 \text{ W}$

 v_0 spécifiée = 0,240 / 9 = 0,02666 m / s

v spécifiée = $\frac{Ps spé}{F} = \frac{1,25}{50} = \frac{0,025 m}{s}$

Comparaison entre valeurs spécifiées et valeurs mesurées

Ecart % sur la vitesse à vide : $100 \times (\Delta v_0 / v_0 \text{ spécifié}) = + 7,4 \%$

Ecart % sur la vitesse en charge : $100 \times (\Delta v / v \text{ spécifiés}) = -14 \%$

Ecart % sur la puissance consommée à vide : $100 \times (\Delta Pe_0 / Pe_0 \text{ spécifié}) = + 152 \% !!$

Ecart % sur la puissance consommée en charge : $100 \times (\Delta Pe / Pe spécifié) = 0 \%$

Ecart % sur la Puissance mécanique utile en charge : $100 \times (\Delta Ps / Ps \text{ spécifié}) = -16 \%$

Ecart % sur le rendement en charge : $100 \times (\Delta \eta / \eta \text{ spécifié}) = -25,5 \%$

Conclusion

Écarts intolérables

Ecart % sur la vitesse en charge : -14 %

Ecart % sur le rendement en charge : - 21,2 %

Ecart % sur la puissance consommée à vide : + 152 %

professeur

Conclusion par rapport à la problématique

On dépasse (en absolue) facilement 15 %, ce qui n'est, commercialement, pas tolérable pour une commande de 300 appareils.

Eléments de discussion sur les causes de ces écarts et d'amélioration du protocole

• Chaine de transmission du système mis à disposition :

Dans la chaîne de transmission de puissance, il y a les éléments :

Moteur: bon rendement, usure mécanique modérée.

=> Protocole correct, mesures fiables.

Engrenage: bon rendement 98 % dans des conditions normales, usure modérée.

=> Protocole correct, mesures fiables.

Vis / écrou : rendement modeste mais très tributaire d'un bon graissage, usure mécanique

importante si mauvais graissage au départ et si étanchéité compromise en

fonctionnement.

=> Protocole discutable, vérifier les conditions de lubrification du vis / écrou pour valider ou invalider l'essai qui vient d'avoir lieu ou prévoir plusieurs appareils pour

les mesures.

• Protocole employé:

Calcul de puissance mécanique :

P = F V cos α ; α = 180° ou 0° par hypothèse! => vérifier l'alignement entre tige et corde.

Modélisation de la charge F:

Avec une poulie / corde / masse.

- => vérifier l'alignement entre tige et corde.
- => vérifier la lubrification et / ou le guidage de la poulie.
- => utiliser un câble plutôt qu'une corde.
- => tenir compte de masse ajoutées (support + corde) dans la détermination de la masse/charge.

Mesure de l'intensité :

Moyen = multimètre -> valeur instantanée difficile à acquérir!

=> utiliser une centrale d'acquisition avec signal « traitable » -> courant moyen plus précis.

Mesure de vitesse :

Moyen = chronomètre -> valeur imprécise de mesure de temps !

=> utiliser un film -> pointage de distance et de temps plus précis.